首页> 外文OA文献 >Multi-Dot Floating-Gates for Nonvolatile Semiconductor Memories - Their Ion Beam Synthesis and Morphology
【2h】

Multi-Dot Floating-Gates for Nonvolatile Semiconductor Memories - Their Ion Beam Synthesis and Morphology

机译:用于非易失性半导体存储器的多点浮动栅极 - 它们的   离子束合成与形态学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Scalability and performance of current flash memories can be improvedsubstantially by replacing the floating poly-Si gate by a layer of Si dots.This multi-dot layer can be fabricated CMOS-compatibly in very thin gate oxideby ion beam synthesis (IBS). Here, we present both experimental and theoreticalstudies on IBS of multi-dot layers consisting of Si nanocrystals (NCs). The NCsare produced by ultra low energy Si ion implantation, which causes a high Sisupersaturation in the shallow implantation region. During post-implantationannealing, this supersaturation leads to phase separation of the excess Si fromthe SiO2. Till now, the study of this phase separation process suffered fromthe weak Z contrast between Si and SiO2 in Transmission Electron Microscopy(TEM). Here, this imaging problem is resolved by mapping Si plasmon losses witha Scanning Transmission Electron Microscopy equipped with a parallel ElectronEnergy Loss Spectroscopy system (PEELS-STEM). Additionally, kinetic latticeMonte Carlo simulations of Si phase separation have been performed and comparedwith the experimental Si plasmon maps. It has been predicted theoretically thatthe morphology of the multi-dot Si floating-gate changes with increasing ionfluence from isolated, spherical NCs to percolated spinodal Si pattern. Thesepatterns agree remarkably with PEELS-STEM images. However, the predictedfluence for spinodal patterns is lower than the experimental one. Becauseoxidants of the ambient atmosphere penetrate into the as-implanted SiO2, asubstantial fraction of the implanted Si might be lost due to oxidation.
机译:通过用一层Si点代替浮动的多晶硅栅可以大大提高当前闪存的可扩展性和性能。该多点层可以通过离子束合成(IBS)在非常薄的栅氧化物中与CMOS兼容地制造。在这里,我们介绍了由Si纳米晶体(NCs)组成的多点层的IBS的实验和理论研究。 NCs是通过超低能Si离子注入产生的,这会在浅注入区域中引起高Si超饱和。在注入后退火期间,这种过饱和导致过量的Si与SiO2相分离。直到现在,这种相分离过程的研究还受到透射电子显微镜(TEM)中Si和SiO2之间弱的Z反差的影响。在这里,该成像问题通过使用配备有平行电子能量损失谱系统(PEELS-STEM)的扫描透射电子显微镜对Si等离子体激元损耗进行映射来解决。另外,进行了Si相分离的动力学晶格蒙特卡罗模拟,并与实验的Si等离激元图进行了比较。从理论上已经预测,多点Si浮栅的形态会随着离子流的增加而发生变化,从孤立的球形NC到渗透的旋节线Si图案。这些图案与PEELS-STEM图像非常吻合。但是,旋节线模式的预测通量低于实验模式。因为环境大气中的氧化剂会渗透到注入的SiO2中,所以注入的Si可能会由于氧化而损失掉大部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号